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Abstract— Coral reefs, one of the most biodiverse ecosystems
on the planet, are facing the threat of extinction. This is
projected to cause severe environmental damage, especially
on the fronts of climate change and marine life. Although
multiple efforts are being made to evaluate coral reef health
and revitalize those witnessing severe bleaching, these efforts
remain expensive and unsustainable. In this project, we study
the capability of using satellite data from NASA’s Landsat-8
and MODIS-Aqua to detect coral reef presence and evaluate
coral bleaching severity. We adopt a multi-faceted approach
by merging data from Allen Coral Atlas and Global Coral
Bleaching Dataset with satellite data in the Caribbean and
Great Barrier Reef regions. Using a gradient-boosted tree-based
classification model, we achieve 96.5% accuracy in identifying
coral/algae, implement a temporal voting-based classifier to
distinguish coral from algae, and achieve 96.94% weighted
precision in evaluating bleaching severity in the Great Barrier
Reef. Using this machine learning pipeline and the dashboard
developed from it, coral reef experts can identify regions where
the reefs are at risk and act to revitalize them, all while viewing
metrics showing trends in sea surface temperature in those
areas.

I. INTRODUCTION
Coral reefs, which are constituted of thousands of small

marine animals called corals and exist in over 2000 species,
have been witnessing large-scale and global degeneration
as a result of different natural and man-made conditions.
This poses a grave danger on the environment as a whole
and contributes to the exacerbation of climate conditions
around the world because coral reefs play a critical role
in biodiversity preservation and marine life sustainability. In
addition to that, they play a major role in shoreline protection
[1]–[4]. Although reef degradation has been occurring since
the 1900s, the recent widespread reef mortality has been
associated with the bleaching phenomenon [5].

Given the urgency of the threats facing coral reef health,
there have been many initiatives centered around coral
reef monitoring and in-situ assessments worldwide such as
Reef Check, CoralWatch, Coral Vita and many others. Data
from these programs support different efforts such as the
Global Coral Reef Monitoring Network that publish reports
on coral reef health globally. Although the efforts put by
these initiatives are crucial in understanding the roots of
the problem, it has been proven that such on-site surveys
- which require funding, labor, and other resources - are
difficult to sustain. In addition to that, they lack an element of

consistency between the different groups and organizations
that are working on them despite current global efforts
towards reaching standardized mechanisms to monitor and
record data on coral reefs [5]. These concerns about the
reliability of survey data on coral reef health in addition
to the issue of scalability of such projects worldwide have
instigated research on alternative methods to determine coral
reef health. A significant aspect of that research focuses
on utilizing remote sensing data that is available through
different sources as an alternative to field surveys. Remote
sensing, and satellites in specific, offer a significantly more
cost-effective mechanism to assess coral reef health than
traditional surveying. Despite certain limitations that satellite
data could pose (such as layers of detail and accuracy in
the backscatter or image data), it does provide significant
coverage of the areas of interest with both temporal and
spatial components [7].

With the availability of survey on-site data on coral reef
health and the open source satellite data provided by multiple
NASA projects, this project approaches determining the
health of coral reefs from a machine learning perspective.
It is important to note that the health of coral reefs is
determined by the bleaching phenomenon, which is the
corals’ reaction to stress factors. This entails collecting data
about coral reef health in the Caribbean and Great Barrier
Reef regions from credible sources such as Allen Coral Atlas
and the Global Coral Bleaching Database and setting those
as ground truths used to calibrate predictive machine learning
models. The said models are trained using open-source
NASA satellite data (MODIS and Landsat-8) to provide
two layers of prediction. The first identifies coral presence
and uses a temporal voting-based method to distinguish
between coral and algae. The second layer then evaluates the
bleaching status of points identified as coral. This is a multi-
phase project that first collects the data from the selected
sources, then aggregates the satellite and ground truth data
through temporal and spatial alignment, and finally trains and
tests machine learning models to predict coral presence and
evaluate their vitality. The project also provides a dashboard
that serves as a user interface for the models, by which the
users can input certain longitudes and latitudes and retrieve
model outputs indicating coral presence and bleaching level.



II. LITERATURE REVIEW & BACKGROUND

The urgency in the need to monitor the location and
health of coral reefs has pushed researchers to search for
scalable methods that often combine satellite imagery with
machine learning techniques to identify and classify coral
presence and health [8]. NASA’s Landsat program holds
multispectral satellite imagery and provides open access to
data, thus has been popular in research. However, identifying
coral bleaching using satellite imagery continues to be a
difficult problem, as bleached corals have similar spectral
values as sand and similar reflectance properties to algae [9].
Additionally, coral bleaching and recovery typically occur
over a span of weeks or months, thus cannot be captured in
a singular satellite image. Past studies have used Sentinel-2
for detecting coral bleaching but results have been largely
unsatisfactory, as sand and rubble are often misclassified as
bleached coral [10].

Due to unsuccessful attempts at using satellite imagery
alone, researchers have turned to adding other indicators
to their models to identify bleaching. In excessively warm
water, zooxanthellae will leave the tissue of the coral, result-
ing in bleaching. Other causes of bleaching are runoff and
pollution, overexposure to sunlight, and extreme low tides
that leave coral exposed to air [11]. The National Oceanic
and Atmospheric Administration (NOAA) has used sea sur-
face temperature to predict bleaching, and relies on marine
heatwaves as an indicator for potential bleaching events.
They establish a temperature baseline and compare daily
temperatures to it. Furthermore, the bleaching phenomenon
has also been associated with fluctuations in chlorophyll A.
In fact, studying SST without considering the physiological
state of chlorophyll A from zooxanthellae is rather limiting
[13]. Jones (1997) suggests that chlorophyll A concentration
decreases during bleaching events, only to increase again in
the months following the event. This zooxanthellar chloro-
phyll A has also been observed to change in different water
temperatures. Though the presence of chlorophyll A had
been previously associated to algal cells, it has been shown
that in certain bleaching events, algal cells remain constant
despite a change in chlorophyll A concentration. Therefore,
this led to speculation about a relationship between corals
themselves and chlorophyll A concentration [14].

Previously used models for remote coral reef mapping
include maximum likelihood classifiers, support vector ma-
chines (SVM), random forests (RF) with the latter yielding
the highest accuracy scores [9]. A study conducted on
Landsat-7 and Landsat-8 images to predict coral reef health
in locations on the Pacific Ocean known to house coral reefs
collected survey data and used it as ground truth. After spatial
and temporal matching between satellite and ground truth
data, a support vector machine was trained and validated,
per-pixel classification was performed. This method is well-
founded and its framework will be used as a starting point
in this project [5].

III. DATA SOURCES, COLLECTION & FUSION

Data collection and fusion was a crucial component to
this research project and the four data sources used in this

study were the Allen Coral Atlas, the Global Coral Bleaching
Database, and the MODIS and Landsat-8 satellites.

A. Allen Coral Atlas

The Allen Coral Atlas is the result of a project that
is maintained by the Arizona State University Center for
Global Discovery and Conservation Science, in collaboration
with Planet, the Coral Reef Alliance, and the University
of Queensland. It contains a global map of coral reefs,
identified using analytical techniques on satellite imagery
from PlanetScope’s Dove and SkySat satellites. This map
is in near real time, with 4-10m resolution satellite imagery
that updates biweekly.

The Atlas contains mapped areas that are preloaded for
ease of download for the user. Our team downloaded data
from the following two mapped areas in the Atlas- (1)
Great Barrier Reef and Torres Strait, (2) Northern Caribbean,
Florida, & Bahamas. The download contained a benthic
mapping in GeoPackage format, which was loaded into a
pandas dataframe. The benthic map is composed of six
classifications categories, which are coral/algae, seagrass,
microalgal mats, rock, rubble, and sand. The benthic map
class description document explains that the satellites used by
the Atlas are not able to identify key reef health assessment
measures such as living and dead coral cover, coral bleach-
ing, and functional forms of algae, thus the coral information
on benthic map is constrained to the broad category of
coral/algae.

The Allen Coral Atlas also partners with the National
Oceanic and Atmospheric Administration (NOAA) and dis-
plays data from NOAA’s Coral Reef Watch program. The
information on display in the Atlas is pulled from the most
recently published NOAA data on sea surface temperature
(SST), SST Anomaly, Coral Bleaching HotSpot, Degree
Heating Week (DHW), a 7-day maximum Bleaching Alert
Area, and 7-day SST Trend, and results in a mapping of coral
bleaching into the categories of low, moderate, and severe.
Although this data is not yet available for download, the
methods for bleaching inference using SST are documented
and were used as inspiration for our attempts to identify
bleaching.

B. Global Coral Bleaching Database (GCBD)

The global coral bleaching database is composed of seven
previous coral bleaching studies consolidating research from
1980 to 2020 into one database structure. [18] The included
“Query 1 Summary Bleaching Cover” connects much of
their relational database to a table containing latitude &
longitude coordinates, the date the study was conducted,
and one of three output variables. Those variables being
Percent Bleached, a zero to one continuous output repre-
senting the percent of coral bleached within the area, as
well as Bleaching Prevalence Score and Severity Code, both
categorical variables articulated as integers from negative one
to four. These integers are codes which represent various
ranges of bleaching levels which we then converted to the
continuous Percent Bleached output as outlined in table I
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to create a consistent target variable to train on. Records
with Bleaching Prevalence Scores were directly converted to
the median value of the range that they represent. For the
Severity Code, in around half of the cases the records also
had a continuous value for the percent of coral bleached in
that area. Because of this, we took the median value from the
known percent bleached records of each bucket and entered
that as the percent bleached score where one was not already
present. Then any unknown values from either variable were
dropped from our final dataset.

TABLE I: Conversion of Categorical GCBD Values to
Continuous Bleaching Percentages

Original Code Bleaching Prevalence Continuous Value Severity Score Continuous Value
-1 N/A N/A Unknown Dropped
0 0% 0% 0% 0%
1 1% - 10% 5% 1% - 10% 4%
2 10% - 25% 17.5% 11% - 50% 32.85%
3 25% - 50% 37.5% 50% - 100% 75%
4 50% - 100% 75% N/A N/A

Lastly, records from the ReefCheck study were often split
between two bleaching categories – population and colony.
The population category was chosen so that one value was
present for each time and location. This study also often
collected multiple bleaching percentages for different depths.
These values were averaged for all depths at a given location
to avoid confusion in our model training that would arise
from two identical inputs having different outputs.

C. Satellite Data: Landsat-8 & MODIS

Two satellite sources were used to build the dataset:
Landsat-8 and MODIS. Landsat-8 launched in February 2013
whereas MODIS was first launched December 1999 aboard
the Terra satellite. A second satellite, Aqua, was launched
in May 2002 which also included a MODIS instrument. The
time it takes for orbits to repeat is 16 days for Landsat and
every 1-2 days for MODIS. In this study, we utilized surface
reflectance data provided by each of the instruments. In total,
six surface reflectance bands as well as the pixel quality from
Landsat and nine surface reflectance bands from MODIS
were used. The scale at which data for Landsat and MODIS
was gathered is at 10x10m and 1000x1000m, respectively.
Collection of this data was possible by taking advantage of
the Google Earth Engine API.

D. Data Fusion

The process of aligning our coral and satellite data sources
together was straightforward due to the fact we collected
our satellite data from Google Earth Engine. We were able
to create queries for a specific location and time using the
longitude, latitude, and date from the respective coral dataset.
Since Landsat did not repeat orbits daily, we had to create
monthly queries. In the case that multiple data points were
returned, only the data point that occurred closest to the time
of the coral record was kept. Once data for both satellite
sources was collected, they were able to be merged together
by longitude and latitude. Both Allen Coral Atlas and the
Global Coral Bleaching Database were used to create their
own combined datasets.

IV. DATA ANALYSIS & FEATURE ENGINEERING

This section describes the findings from exploratory anal-
ysis performed on both the Global Coral Bleaching Dataset
and the MODIS data. It also delineates the process of feature
engineering that was performed using MODIS data based on
research in the field of coral bleaching.

A. GCBD Exploratory Data Analysis

Following our steps described in the Global Coral Bleach-
ing Database setup, we were left with 22,955 rows. This was
further condensed upon being joined with Landsat 8 which
began collecting data in 2013 causing us to lose over 30
years of bleaching history. As we focus down to our specific
regions, we are left with our final training data of 1162 rows.
As seen in 1, these rows are skewed to lower bleaching values
with far less data at higher bleaching levels.

Fig. 1: Density Plot of Percent Bleached Data in GCBD

B. MODIS Data Analysis & Feature Engineering

Data from MODIS was collected and contained reflectance
bands in addition to information on sea surface temperature,
chlorophyll A, particulate organic carbon, and normalized
fluorescence line height.

Given the literature on the existence of a relationship
between coral bleaching and chlorophyll A concentration,
chlorophyll A data was pulled from MODIS-Aqua to be stud-
ied and different features were engineered from it. Similar
to the methodology used in studying sea surface temperature
data, chlorophyll A data was collected from MODIS for each
of the locations (longitude/latitude) present in the Global
Coral Bleaching Database. For each location and date, the
chlorophyll A data from the past 90 days was retrieved and
the following metrics were calculated:

• Average chlorophyll: the average chlorophyll A concen-
tration at the given point over the 90-day period

• Minimum chlorophyll: the minimum chlorophyll A con-
centration at the given point over the 90-day period

• Maximum chlorophyll: the maximum chlorophyll A
concentration at the given point over the 90-day period

• Chlorophyll change: the difference between the last and
first record of chlorophyll A at the given point over the
90-day period

These features were calculated in order to provide insight
into the fluctuation of chlorophyll A that the point being
studied has witnessed in the 90-day window. This allows
the detection of sudden changes and aids in understanding
the magnitude at which these changes occurred. These same
features are also created for POC (particulate organic carbon)
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and NFLH (normalized fluorescence line height) data as
these are collected for every instance of chlorophyll A
and will potentially serve as useful features for the model.
Research on the relationship between POC and NFLH was
not performed as part of this project but could be studied
should this project be further developed in the future.

Fig. 2: Correlation between Percent Bleaching &
Chlorophyll A Features

Figure 2 shows the correlation matrix between the fea-
tures generated for chlorophyll A and the percent bleaching
reported by GCBD. As observed, we can see that no strong
correlation exists between any of the features and bleaching.
However, this does not necessarily mean they would not be
helpful in our model. It is also critical to note that according
to previous studies, it is difficult to determine the cause
of changes in chlorophyll A concentration, as contributing
factors include changes in coral health, fluctuation in algal
cell presence, or existence of phytoplankton in the area.

Fig. 3: Coral Bleaching Sum vs. Average Chlorophyll A
Concentration

At the point (lat=-26.645 and lon=153.160806), figure 3
shows an increase in the average chlorophyll A concentration
and chlorophyll A change during bleaching events (2014/10
- 2015/05) while bleaching decreases, and an increase in

those averages before that (bleaching period). However, we
also observe a decrease in both bleaching and chlorophyll
between 2016/09 and 2017/01. This indicates that changes
in chlorophyll A concentration may correspond to bleaching
events, although many other factors are also at play. Most
notably, this example suggests that changes in chlorophyll
A concentration could be a lagging indicator of bleaching
levels at a given location. After performing this analysis, we
decided to incorporate chlorophyll A features in our models.

Following previous research showing the impact of rising
sea surface temperatures (SST) on coral bleaching, we also
extended the SST data for a 90 day history before each
prediction in order to capture the environmental stress on
the coral. Previous work showed that sustained temperatures
beyond the monthly maximum mean (MMM) increases the
risk of bleaching events [19]–[21]. More specifically, the
Monthly Maximum Mean is the warmest average temper-
ature of any month at a particular location. This work is
further documented in Liu Et al. (2017) outlining the benefits
of sea surface temperature to MMM based metrics HotSpot
and Degree Heating Weeks (DHW) succeed as predictors
for bleaching events. HotSpot functions as the direct SST –
MMM comparison while DHW is defined by the following
function:

DHWi =

i∑
j=i−83

(
HSj

7
); where HSj >= 1

Using MODIS, we were able to access sea surface tem-
peratures at any location and time through the scope of the
data. However, to create the MMM, pulling multiple years
of history to create monthly averages for the entire globe
was infeasible. This was instead created with data from
NOAA, accessed through the Columbia IRI Data Library
[23]. This data source contained the monthly mean sea
surface temperatures for each degree around the globe from
1980 - 2020. From there the monthly maximum mean was
calculated at each available point. There is some error created
by calculating this with a one degree difference per data
point. At the furthest possible extent, a coral point could
be 68km away from the closest MMM location to the
GCBD point. Also, the work cited earlier by NOAA works
within a half degree resolution. Because of this and initial
comparisons to GCBD showing extensive bleaching with 0
DWH, we decided to average a variety of top months to lower
the threshold for data collection. Ultimately, we landed on
using the top three months as this best captured the variability
of GCBD’s bleaching values.

Using this dataset, we pulled a 90 day history of sea
surface temperatures at each record in the GCBD dataset
to compare with its location’s closest MMM. From this we
pulled out a variety of features including, the maximum
temperature, the maximum temperature beyond the MMM,
the cumulative degrees above MMM, and the number of
days above MMM, NOAA’s HotSpot and DHW. DHW is the
current standard for predicting bleaching events. However,
we found that the high floor required for DHW to start
capturing data resulted in it mostly producing zeros. Curious
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Fig. 4: Flow Chart of Modeling System Architecture

if GCBD’s data collection was performed beyond 90 days
from a bleaching event, we decided to capture the metric over
a longer history. Following the work indicating that healing
from severe bleaching events can take three years or longer,
[24] we then extended the DHW’s data collection to go back
three years. To capture this difference in data collection,
the date when the maximum Degree Heating Week value
occurred was captured as a separate column.

Beyond high sea surface temperatures, we also built a
set of features inspired by work which found that rapidly
rising temperatures can cause bleaching at an overall lower
threshold than the MMM [25]. They found this relationship
was best captured when the coefficient of variation (CV)
over a rolling fourteen day period increased beyond 1.9. This
finding was replicated within our features as the maximum
CV over the past 90 days, the cumulative CV when above
1.9, and the total number of days above 1.9. These were
also duplicated as “summer corrected” features which only
counted CV values when the temperature was increasing.
The result of this work created eleven individual features
capturing both the extremes and the extent of sustained
high temperatures, as well as how rapidly those temperatures
changed prior to the GCBD record collection. These features,
along with the nine features related to POC, NFLH, and
chlorophyll A encompass an expanded view characterizing
the reef’s environment over the past three months and how
detectors for organic matter have adjusted.

V. OVERVIEW OF SYSTEM ARCHITECTURE

Figure 4 depicts the system adopted by this study to
remotely identify coral presence and monitor the health of
coral reefs using satellite data from NASA instruments. The
system consists of the multiple steps outlined below:

1) Collection and fusion of surface reflectance features
and spectral indices from the Landsat-8 and MODIS
satellites for a given 10x10-meter area

2) Use of the features gathered in step 1 to infer
coral/algal presence using an XGBoost classification

model trained on a large volume of Allen Coral Atlas
data from the same region of the ocean as the given
10x10-meter area

3) A temporal, voting-based method for distinguishing
between coral and algae to determine coral presence
at the given location

4) Incorporation of features inferred from the MODIS
satellite that are known to be associated with coral
bleaching including sea surface temperature and
chlorophyll A concentration

5) Use of a mixture of features gathered in step 1 and step
4 to infer coral bleaching level using a model trained
on available Global Coral Bleaching Data

The subsequent sections will describe each component of the
proposed system in detail, discuss the motivation for various
design choices, and highlight current results and suggestions
for future expansion.

VI. MODEL DEVELOPMENT, RESULTS & DISCUSSION

This section explains the development of each of the
models created, the data used for each of them, and the
results/output generated in addition to a discussion on their
capacities and limitations.

A. Coral/Algae Detection

The first model within the system architecture is detecting
coral/algae from other benthic classes using an XGBoost
model. Two regional models were created, one for the
Northern Caribbean and another for the Great Barrier Reef.
The features used in these models are the surface reflectance
bands from both satellites and spectral indices calculated
from Landsat. The Northern Caribbean model yielded an ac-
curacy of 84.6% and the Great Barrier Reef model produced
an accuracy of 96.5%. We believe the discrepancy between
the two accuracies is caused by the Great Barrier Reef having
larger contiguous areas of coral compared to other regions.
This makes it easier to determine coral/algae from non-
coral, hence the higher accuracy. In order to produce reliable
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results, models need to be made for each specific region. This
is because not all regions contain the same species of coral,
so the models have a hard time generalizing to regions that
are not included in the training data.

B. Coral/Algae Differentiation: Temporal, Voting Based
Classification

As noted in the previous section, the first model in the
proposed system architecture serves to distinguish coral/algal
presence from other benthic classes like rubble, rock, and
sand for a given location. This grouping of coral and algae
into a single class arises from the challenge of discerning
between coral and algae by their spectral properties alone
as our system does using Landsat and MODIS surface
reflectance and spectral indices. Figure 5 illustrates the

Fig. 5: Spectral Signatures of Various Coral & Algae
Species (Leiper 2014)

similarity in the mean spectral reflectance signatures between
certain classes of benthic algae and coral species at Heron
Reef from a 2014 study from Leiper et al [15]. Note the
similarity in the spectral signature of live coral, algal turf,
and crustose coralline algae. Crucially, the values shown
in the figure are spectral measurements done in-situ, or in
the ocean, using a spectrometer from only 5 centimeters
away. In this work, we look for ways to distinguish between
coral and algal species from NASA instruments in orbit,
having to also contend with factors like ocean turbidity,
varying cloud aerosol opacity, and ocean surface roughness
that further obscure the measured spectral properties of
a given location [16]. However, an effective method for
distinguishing between coral and algae is essential to the
success of a system to identify the presence of coral reefs
and monitor their health. While coral and algae display very
similar spectral properties, they differ in that algal presence
is seasonal. Both benthic algae and floating algal mats have
been found to exhibit seasonal changes in abundance and
composition, mainly attributable to water temperature and
salinity changes across different seasons [17]. Considering
these findings, we propose a temporal, voting-based method
for distinguishing between coral and algae.

Given the capability of the coral/algae identification model
outlined in section VI-A (coral presence section) and the
seasonal changes in algal presence, using the model inference
at different time points over the course of a year could
be used to determine if a given location contained coral
or algae. This results from the fact that we would expect

coral presence to be consistent in every season, while algae
presence would change season-to-season, which should be
revealed in the coral/algae model predictions. To implement
this idea, we propose using satellite data for the given
location at six time intervals throughout the year and predict-
ing coral/algae presence throughout the year to exploit the
seasonal differences between coral and algae. This concept
is illustrated in the figure below. In the first plot, we can see
that there is a clear change in MODIS surface reflectance
features at the given location during the summer months
and that those changes correspond to model prediction of
coral/algal presence in that period. Given that the model
only predicted coral/algal presence in the summer period
(southern hemisphere), this follows the expected behavior
of an area of algae that experiences seasonal changes in
composition or abundance. Conversely, in an area containing
coral, we would expect consistent model predictions of
coral/algae over regardless of the season.

Fig. 6: Changes in MODIS surface reflectance features at
the given location during the summer months and

corresponding changes in model prediction of coral/algal
presence in that period

Drawing from this intuition, a quantitative method was
developed to capture this idea and distinguish between coral
and algae based on seasonal variation in model predictions.
Our method takes the predicted probabilities generated by
the coral/algae identification model at the six time points
throughout the year and computes a weighted average.
Weights for each time period are allocated based on the
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ability to differentiate between coral and algae in that season.
In general, less weight is given in the warmer, summer
months as that is the period when algal abundance is ex-
pected to be the highest. The figure below illustrates our
quantitative approach. We can see the model’s predicted
probabilities at the six time points throughout the year and
the resulting weighted average. Since the weighted average
predicted probability is less than 0.5, this point would be
classified as algae.

Fig. 7: Predicted Probabilities, Prediction Interval, and
Decision

Additionally, generating multiple model predictions for a
single point allows us to generate a 95% prediction interval
associated with the probability of coral presence in that
location using the mean and standard deviation of the six
predicted probabilities (blue shaded region in above figure).
The ability to quantify uncertainty is especially important
for this problem as it allows us to provide guidance to
researchers with limited time and resources on where their
efforts are best spent.

C. Bleaching Model

With the features captured from Landsat-8 and MODIS,
we tested a variety of models to predict the extent of
bleaching. We began by splitting the data into temporal train,
validation, and test sets to account for locations that were
documented more than once. This resulted in us testing on
628 rows, validating on 128 and testing on 151 records.
First, we trained a gradient-boosted decision tree regres-
sion (XGBRegression) model to predict bleaching percent
directly along a 0 to 1 continuous output. This resulted in
an overall mean absolute error of 13.95%. However, that
value represents comparatively high accuracy in the more
frequent low bleaching records with error rates increasing
dramatically (30%-70%) when exclusively looking at higher
bleaching values. This appears to be a result of the data’s
imbalance at the upper limits leading it to almost never
predict values over 30% bleached. Given these results, we
tried using the model not as a predictor of absolute value
but instead to rank the locations observed. This potentially
allows for increased usability even if the absolute values
contained higher than desired inaccuracies. By ranking the
records along the predicted output and comparing it back

to their true ranking we began to see hints of positive
results. Figure 8 shows a matrix comparing the actual to
predicted rankings among our test set. These bins represent
each 25th percentile rankings and show that the model has
some success in identifying the most extreme percentiles.
However, it struggles much more with identifying how to
rank those in the center.

Fig. 8: Evaluating the Ranking Performance of a Coral
Bleaching Regression Model

Lastly, we trained a series of gradient-boosted decision
tree classification models (XGBClassifier) to predict one of
several bins. This allowed us to resample our data using
synthetic minority over sampling technique (SMOTE) to
rebalance our testing bins [26]. With this technique, new
artificial records are created by interpolating features within
the underrepresented classes to match the dominant class.
Using this technique, we trained a three binned model
which classified regions below 20% as low, 20%-50% as
moderately bleached and above 50% as severely bleached.
The resulting model showed promising results classifying
the low bleaching cases. However, it struggled differentiating
between moderately and severely bleached corals. Overall, it
had a weighted F1 score of 76.13% and recall of 68.14%.
However, that was mostly supported by the low bleaching
scores. Comparatively, recall in the moderate and severe
buckets averaged close to random chance. Consequently,
we then trained a model to predict a dual classification
system splitting the data at 30% bleached. The resulting
model showed more promise, accurately identifying 80%
of moderate/severe records as seen in figure 9 with an
overall weighted F1 score of 81.59%, a recall of 72%, and
a weighted precision of 96.94%.

To better understand how this model is making decisions,
three of our top features are analyzed through SHAP val-
ues below. SHAP values calculate the marginal impact a
particular feature played into a model’s decision. To better
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Fig. 9: Confusion Matrix of the Final Model Selected for
the Dashboard

understand these values, they were then converted to a [0,1]
function representing the probability that the model will
predict either class through the length of the feature space.

Figure 10 displays the resulting charts for several of our
most important features. The red line shows the average
marginal impact that our model will predict moderate to
severe bleaching based on changes in the dependent variable.
The blue area represents one standard deviation caused by
the covariance that multiple variables play in the model’s
decision. All of these show a generally positive relationship
between increases in the dependent variable to increases
in the probability of predicting moderate to severe bleach-
ing. Maximum POC shows a generally positive relationship
where as long as the value is not very low or null, the
model is more likely to predict some level of bleaching.
The second chart shows the relative impact of a feature
representing the cumulative stress from rapidly rising sea
surface temperatures. This accumulates the total coefficient
of variation when the value is over 1.9 and the temperatures
are rising. High values indicate either repeated upswings in
sea surface temperatures or intense periods of continuously
increasing temperatures over the previous 90 days which
expectedly leads the model to often predict moderate to
severe bleaching. The final chart shows the cumulative de-
grees above the maximum monthly mean representing stress
from high sea surface temperatures. This feature most closely
represents the thought process behind the global standard in
predicting bleaching events- Degree Heating Weeks, while
having a lower floor to when it starts to capture information.
This result supports previous work showing that higher sea
surface temperatures - even if below the threshold for a
bleaching event – has a negative impact on coral health and
impacts its ability to heal from previous damage. [27]

VII. LIMITATIONS & FUTURE CONSIDERATIONS

Despite certain limitations encountered, our team uncov-
ered potential considerations and suggestions that future

Fig. 10: Analyzing the marginal impact of three of the
most important features on the model’s decision

researchers could explore. The top constraint that our team
faced was related to the data. The Allen Coral Atlas was
the most robust coral data source that was found in our
research, but rather than having separate classes for coral and
algae, the Allen Coral Atlas classified the two together. The
vision of this project was to identify coral, thus this grouped
classification of coral and algae was initially an impediment
to the achievement of our project goals. Our team worked
around this issue by implementing the temporal voting-based
classification to distinguish between coral and algae, but this
comes with the caveat that we are unsure of the accuracy of
this technique due to lack of ground truth data.

While we did receive six labeled ground truth points from
the team at Coral Vita, more points would be needed to
verify our temporal technique for differentiating between
coral and algae. This type of data is lacking due to the
aforementioned similarity in spectral signatures in coral
and algae. This would require time-consuming, manual data
collection, which is hard to do consistently at scale.

The coral bleaching model was also subject to limitations.
While the Allen Coral Atlas did contain bleaching informa-
tion, this data was not available for download at the time of
the study, and was only available to view on the virtual atlas
map. The Allen Coral Atlas specifies that the bleaching data
is in Beta mode, thus further development could lead to this
data becoming available for download in the future.
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With the Allen Coral Atlas not being a viable resource for
coral bleaching, our bleaching model relied on the Global
Coral Bleaching Database. However, this source was limited
in its size. While the GCBD contained 34,846 total rows,
only 1,162 rows ended up being usable and within the spatial
and temporal constraints of our study. Additionally, this
database is the result of the combination of several different
studies, all of which had slightly different methods for
collecting and reporting the data. To improve the robustness
of the data for the bleaching model and to improve the
performance, our team engineered features related to sea
surface temperature, particular organic carbon, normalized
fluorescence line height and chlorophyll A presence. These
features were generated as a result of conducting research
on the environmental causes of coral bleaching, such as
increased ocean temperature. The added features improved
our model, and we see potential for the addition of more
features. Storm-generated precipitation, overexposure to sun-
light, and low tides are known causes of bleaching that were
not included in the model features.

Additionally, we found that models trained on data from
one region did not extend well to other regions. We believe
that this could be attributed to the diversity of coral species
and composition in different regions. This is another potential
area to explore further in future research.

VIII. ETHICAL CONSIDERATIONS

A. Competing Interests

The authors declare no competing interests.

B. NASA’s Ethical AI Principles

1) Fair: We consider and pay close attention to data bias
and imbalance and use different measures to account
for them such as SMOTE which tackles the lack of
data in one region of study versus another. The project
also utilizes open-source satellite and coral bleaching
data that everyone could access.

2) Explainable and Transparent: Our project is both
explainable and transparent. All of the data collection,
data processing, and predictive modeling codes are
explained in detail and justified in both the code
notebooks and report provided, in addition to the
presentation. Data sources are clearly cited and the
machine learning models are well-documented.

3) Accountable: Our research respects intellectual prop-
erty rules by citing all historical work that we used as
reference or a starting point to ours. We also clearly
state all our model accuracy, precision, and recall
values to ensure that users and readers understand the
capacities of said model.

4) Secure and Safe: Our team spent ample amounts
of time evaluating the models developed and their
results, including but not limited to training, testing,
and validating their output. We also adhere to NASA’s
Software Management Plan that was developed during
the initial phase of this project.

5) Human-Centric and Societally Beneficial: Human
life and societal benefits sit at the core of this project.
The entire goal of our work is to create a system
that allows us to identify areas at which coral reefs
are at risk and allow relevant organizations to take
action to revitalize them. This supports the mission
of maintaining the health of corals around the world,
which preserves their function of supporting the envi-
ronment and reducing the negative impacts of climate
change. This all flows into the benefit of humans and
maintaining a safe planet for them to survive on, with
a safe and healthy environment and climate.

6) Scientifically and Technically Robust: Ensuring reli-
able data quality was a central aspect of this project.
The data collection method and data fusion ensured
that we only train models on relevant data that
contributes to the robustness and reliability of our
models. Our research is well-documented, thoroughly
performed, and has been presented to subject matter
experts in both coral reefs and data science which make
it conforming to the scientific review process.

C. Potential Risks

There are several potential risks that could be associated
with the output of this research project.

1) Short-Term Gains: It’s possible that someone could
take visibility of short-term positive outcomes of our
model (showing that corals in a certain region are no
longer at risk) to argue for a roll back on laws or
regulations protecting the world’s coral reefs before
long term sustainability has been actually achieved.

2) Impact of Model Errors: Errors that fail to detect
the presence of coral and/or degradation to coral
health could result in reefs not receiving the care
or attention that it would have received without this
application. This could result in unnecessary harm to
coral habitats as energy is incorrectly shifted away
from these locations. Alternatively, false alarms for
damage or bleaching to otherwise healthy areas or
seabeds that have no coral at all will waste researchers’
time and resources that could be better spent in other
environments. To address these concerns, model errors
of all kinds are thoroughly documented and published
to help end users understand where these problems
may occur.

IX. CONCLUSION

Bleaching of coral reefs, the main indicator of a de-
cline in their health, evidently has negative implications on
our environment. Although coral revitalization groups have
been investing great efforts into detecting areas where coral
bleaching is occurring, this effort remains constrained with
financial and human resources. This project - sponsored by
NASA and overseen by Coral Vita - focused on developing
a scalable framework that allows for the detection of coral
presence and the evaluation of coral health. After collecting
data from NASA’s Landsat-8 and MODIS-Aqua and aligning
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it both spatially and temporally with bleaching data the
Global Coral Bleaching Database, a three-step modeling
approach was implemented.

Our model first detects the presence of coral and al-
gae as one unit, given their similar spectral indices and
difficulty of distinguishing them from one another from
orbiting satellites. A novel temporal voting-based classifier
then separates coral from algae, an approach that had not
previously been explored, therefore setting a starting point
for further research on its functionality and replicability.
Finally, gradient-boosted tree-based classifier was used to
develop a 2-bin classifier that labels coral as either low-
bleached or moderately/severely bleached.

This research has incorporated years of studies on coral
health and the factors contributing to coral bleaching and
opens the floor for scientists to further expand on the features
we studied (such as sea surface temperature, chlorophyll A,
particulate organic carbon) in the future. In addition to that,
it also offers a practical solution for organizations concerned
with coral health to use the dashboard we developed to
identify regions with coral reefs and evaluate their vitality.
In short, the project provides a solution that was validated
by both data scientists and coral experts, follows NASA’s
Ethical AI framework, poses a set of questions that could be
adopted as starting points for more extensive research, and
offers a user-friendly tool that encapsulates the entirety of
our modeling architecture.
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